Because of their high brightness, stability, longevity, and narrow spectral bandwidth, lasers have been advantageously replacing conventional broadband light sources for fluorescence imaging applications. In addition to allowing higher-sensitivity visualization and enhanced throughput in imaging applications, several unique properties of lasers—narrow beam divergence, high degree of spatial and temporal coherence, and well-defined polarization properties—have spawned new fluorescence imaging techniques. However, the advent of lasers as fluorescence light sources imposes new constraints on imaging systems and their components. Optical filters used in laser-based imaging systems, for example, must meet specific unique requirements compared to filters used in broadband-light-source-based instruments.